Latent Class Analysis as an Unobserved Modeling Approach: Theoretical Foundations, Model Assumptions, and Relationships with Rasch Measurement Models

Authors

DOI:

https://doi.org/10.71112/yqay0d64

Keywords:

latent classes, mixture models, population heterogeneity, Rasch, educational measurement

Abstract

Latent Class Analysis (LCA) is a statistical approach aimed at identifying unobserved subpopulations based on patterns of responses to categorical variables. Unlike continuous latent trait models, LCA assumes that population heterogeneity can be represented through a finite number of qualitatively distinct latent classes. This article presents a theoretical review of latent class analysis, addressing its conceptual foundations, statistical formalization, model assumptions, and the criteria commonly used to determine the optimal number of classes. The conceptual and methodological relationship between LCA and Rasch measurement models is also examined, highlighting their similarities, differences, and potential complementary uses in educational research. The paper concludes with a critical reflection on the advantages, limitations, and current challenges of latent class approaches in the study of complex educational phenomena.

Downloads

Download data is not yet available.

References

Asparouhov, T., & Muthén, B. (2014). Auxiliary variables in mixture modeling: Three-step approaches using Mplus. Structural Equation Modeling: A Multidisciplinary Journal, 21(3), 329–341. DOI: https://doi.org/10.1080/10705511.2014.915181

Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods, 8(3), 338–363. https://doi.org/10.1037/1082-989X.8.3.338 DOI: https://doi.org/10.1037/1082-989X.8.3.338

Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political Analysis, 12(1), 3–27. https://doi.org/10.1093/pan/mph001 DOI: https://doi.org/10.1093/pan/mph001

Bond, T. G., & Fox, C. M. (2015). Applying the Rasch model: Fundamental measurement in the human sciences (3rd ed.). Routledge.

Collins, L. M., & Lanza, S. T. (2010). Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences. Wiley. DOI: https://doi.org/10.1002/9780470567333

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Lawrence Erlbaum. DOI: https://doi.org/10.1037/10519-153

Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61(2), 215–231. https://doi.org/10.1093/biomet/61.2.215 DOI: https://doi.org/10.1093/biomet/61.2.215

Goodman, L. A. (2002). Latent class analysis: The empirical study of latent types, latent variables, and latent structures. In J. A. Hagenaars & A. L. McCutcheon (Eds.), Applied latent class analysis (pp. 3–55). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511499531.002

Hagenaars, J. A., & McCutcheon, A. L. (Eds.). (2002). Applied latent class analysis. Cambridge University Press. https://doi.org/10.1017/CBO9780511499531 DOI: https://doi.org/10.1017/CBO9780511499531

La Lazarsfeld, P. F. (1950). The logical and mathematical foundation of latent structure analysis. In S. A. Stouffer et al. (Eds.), Measurement and prediction (pp. 362–412). Princeton University Press.

zarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Houghton Mifflin.

Linacre, J. M. (2002). What do infit and outfit, mean-square and standardized mean? Rasch Measurement Transactions, 16(2), 878.

Magidson, J., & Vermunt, J. K. (2004). Latent class models. In D. Kaplan (Ed.), The Sage handbook of quantitative methodology for the social sciences (pp. 175–198). Sage. DOI: https://doi.org/10.4135/9781412986311.n10

Masyn, K. E. (2013). Latent class analysis and finite mixture modeling. In T. D. Little (Ed.), The Oxford handbook of quantitative methods (Vol. 2, pp. 551–611). Oxford University Press. DOI: https://doi.org/10.1093/oxfordhb/9780199934898.013.0025

McCutcheon, A. L. (1987). Latent class analysis. Sage. https://doi.org/10.4135/9781412984713 DOI: https://doi.org/10.4135/9781412984713

Muthén, B. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In D. Kaplan (Ed.), The Sage handbook of quantitative methodology for the social sciences (pp. 345–368). Sage. DOI: https://doi.org/10.4135/9781412986311.n19

Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14(4), 535–569. https://doi.org/10.1080/10705510701575396 DOI: https://doi.org/10.1080/10705510701575396

Nylund-Gibson, K., & Choi, A. Y. (2018). Ten frequently asked questions about latent class analysis. Translational Issues in Psychological Science, 4(4), 440–461. https://doi.org/10.1037/tps0000176 DOI: https://doi.org/10.1037/tps0000176

Oberski, D. L. (2016). Beyond the number of classes: Separating substantive from non-substantive dependence in latent class analysis. Advances in Data Analysis and Classification, 10(2), 171–182. https://doi.org/10.1007/s11634-015-0219-0 DOI: https://doi.org/10.1007/s11634-015-0211-0

Rasch, G. (1980). Probabilistic models for some intelligence and attainment tests (Expanded ed.). University of Chicago Press. (Original work published 1960)

Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14(3), 271–282. DOI: https://doi.org/10.1177/014662169001400305

Vermunt, J. K. (2010). Latent class modeling with covariates: Two improved three-step approaches. Political Analysis, 18(4), 450–469. DOI: https://doi.org/10.1093/pan/mpq025

Vermunt, J. K., & Magidson, J. (2002). Latent class cluster analysis. In J. A. Hagenaars & A. L. McCutcheon (Eds.), Applied latent class analysis (pp. 89–106). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511499531.004

Vermunt, J. K., & Magidson, J. (2005). Latent GOLD 4.0 user’s guide. Statistical Innovations.

Von Davier, M., & Yamamoto, K. (2004). Mixture-distribution and hybrid Rasch models. In M. von Davier & C. H. Carstensen (Eds.), Multivariate and mixture distribution Rasch models (pp. 99–115). Springer. DOI: https://doi.org/10.1007/978-0-387-49839-3_6

Wright, B. D., & Masters, G. N. (1982). Rating scale analysis: Rasch measurement. MESA Press.

Published

2026-01-27

Issue

Section

Exact Sciences

How to Cite

Willmore Metivier, J. (2026). Latent Class Analysis as an Unobserved Modeling Approach: Theoretical Foundations, Model Assumptions, and Relationships with Rasch Measurement Models. Multidisciplinary Journal Epistemology of the Sciences, 3(1), 598-617. https://doi.org/10.71112/yqay0d64