Latent Class Analysis as an Unobserved Modeling Approach: Theoretical Foundations, Model Assumptions, and Relationships with Rasch Measurement Models
DOI:
https://doi.org/10.71112/yqay0d64Keywords:
latent classes, mixture models, population heterogeneity, Rasch, educational measurementAbstract
Latent Class Analysis (LCA) is a statistical approach aimed at identifying unobserved subpopulations based on patterns of responses to categorical variables. Unlike continuous latent trait models, LCA assumes that population heterogeneity can be represented through a finite number of qualitatively distinct latent classes. This article presents a theoretical review of latent class analysis, addressing its conceptual foundations, statistical formalization, model assumptions, and the criteria commonly used to determine the optimal number of classes. The conceptual and methodological relationship between LCA and Rasch measurement models is also examined, highlighting their similarities, differences, and potential complementary uses in educational research. The paper concludes with a critical reflection on the advantages, limitations, and current challenges of latent class approaches in the study of complex educational phenomena.
Downloads
References
Asparouhov, T., & Muthén, B. (2014). Auxiliary variables in mixture modeling: Three-step approaches using Mplus. Structural Equation Modeling: A Multidisciplinary Journal, 21(3), 329–341. DOI: https://doi.org/10.1080/10705511.2014.915181
Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods, 8(3), 338–363. https://doi.org/10.1037/1082-989X.8.3.338 DOI: https://doi.org/10.1037/1082-989X.8.3.338
Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political Analysis, 12(1), 3–27. https://doi.org/10.1093/pan/mph001 DOI: https://doi.org/10.1093/pan/mph001
Bond, T. G., & Fox, C. M. (2015). Applying the Rasch model: Fundamental measurement in the human sciences (3rd ed.). Routledge.
Collins, L. M., & Lanza, S. T. (2010). Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences. Wiley. DOI: https://doi.org/10.1002/9780470567333
Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Lawrence Erlbaum. DOI: https://doi.org/10.1037/10519-153
Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61(2), 215–231. https://doi.org/10.1093/biomet/61.2.215 DOI: https://doi.org/10.1093/biomet/61.2.215
Goodman, L. A. (2002). Latent class analysis: The empirical study of latent types, latent variables, and latent structures. In J. A. Hagenaars & A. L. McCutcheon (Eds.), Applied latent class analysis (pp. 3–55). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511499531.002
Hagenaars, J. A., & McCutcheon, A. L. (Eds.). (2002). Applied latent class analysis. Cambridge University Press. https://doi.org/10.1017/CBO9780511499531 DOI: https://doi.org/10.1017/CBO9780511499531
La Lazarsfeld, P. F. (1950). The logical and mathematical foundation of latent structure analysis. In S. A. Stouffer et al. (Eds.), Measurement and prediction (pp. 362–412). Princeton University Press.
zarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Houghton Mifflin.
Linacre, J. M. (2002). What do infit and outfit, mean-square and standardized mean? Rasch Measurement Transactions, 16(2), 878.
Magidson, J., & Vermunt, J. K. (2004). Latent class models. In D. Kaplan (Ed.), The Sage handbook of quantitative methodology for the social sciences (pp. 175–198). Sage. DOI: https://doi.org/10.4135/9781412986311.n10
Masyn, K. E. (2013). Latent class analysis and finite mixture modeling. In T. D. Little (Ed.), The Oxford handbook of quantitative methods (Vol. 2, pp. 551–611). Oxford University Press. DOI: https://doi.org/10.1093/oxfordhb/9780199934898.013.0025
McCutcheon, A. L. (1987). Latent class analysis. Sage. https://doi.org/10.4135/9781412984713 DOI: https://doi.org/10.4135/9781412984713
Muthén, B. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In D. Kaplan (Ed.), The Sage handbook of quantitative methodology for the social sciences (pp. 345–368). Sage. DOI: https://doi.org/10.4135/9781412986311.n19
Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14(4), 535–569. https://doi.org/10.1080/10705510701575396 DOI: https://doi.org/10.1080/10705510701575396
Nylund-Gibson, K., & Choi, A. Y. (2018). Ten frequently asked questions about latent class analysis. Translational Issues in Psychological Science, 4(4), 440–461. https://doi.org/10.1037/tps0000176 DOI: https://doi.org/10.1037/tps0000176
Oberski, D. L. (2016). Beyond the number of classes: Separating substantive from non-substantive dependence in latent class analysis. Advances in Data Analysis and Classification, 10(2), 171–182. https://doi.org/10.1007/s11634-015-0219-0 DOI: https://doi.org/10.1007/s11634-015-0211-0
Rasch, G. (1980). Probabilistic models for some intelligence and attainment tests (Expanded ed.). University of Chicago Press. (Original work published 1960)
Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14(3), 271–282. DOI: https://doi.org/10.1177/014662169001400305
Vermunt, J. K. (2010). Latent class modeling with covariates: Two improved three-step approaches. Political Analysis, 18(4), 450–469. DOI: https://doi.org/10.1093/pan/mpq025
Vermunt, J. K., & Magidson, J. (2002). Latent class cluster analysis. In J. A. Hagenaars & A. L. McCutcheon (Eds.), Applied latent class analysis (pp. 89–106). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511499531.004
Vermunt, J. K., & Magidson, J. (2005). Latent GOLD 4.0 user’s guide. Statistical Innovations.
Von Davier, M., & Yamamoto, K. (2004). Mixture-distribution and hybrid Rasch models. In M. von Davier & C. H. Carstensen (Eds.), Multivariate and mixture distribution Rasch models (pp. 99–115). Springer. DOI: https://doi.org/10.1007/978-0-387-49839-3_6
Wright, B. D., & Masters, G. N. (1982). Rating scale analysis: Rasch measurement. MESA Press.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Jeremias Willmore Metivier (Autor/a)

This work is licensed under a Creative Commons Attribution 4.0 International License.






