Analysis of electrical losses in machine-tools by using predictive maintenance thermography
DOI:
https://doi.org/10.71112/nchv3d08Keywords:
energy efficiency, predictive maintenance, thermography, electrical losses, machine-toolAbstract
This study examines electrical losses in a machine tool workshop using thermography as a predictive maintenance tool. The methodology involved a detailed thermographic inspection of the electrical systems of a compressor, milling machine, and lathe machine, identifying overheating and critical areas during operation. Findings revealed multiple faults, including air leaks, contractor overheating, and faulty electrical connections, all of which contributed to elevated energy consumption. Implementing corrective and preventive measures based on these thermographic insights led to notable energy savings, with estimated reductions of 0.363 kW·h for the milling machine, 0.341 kW·h for the compressor, and 0.322 kW·h for the lathe machine. These results highlight thermography's value in optimizing energy efficiency and emphasize predictive maintenance's role in enhancing operational efficiency and sustainability in industrial settings.
Downloads
References
Alvarado-Hernandez, A., Zamudio-Ramirez, I., Jaen-Cuellar, A., Osornio-Rios, R., Donderis-Quiles, V., & Antonino-Daviu, J. (2022). Infrared thermography smart sensor for the condition monitoring of gearbox and bearings faults in induction motors. Sensors, 22(16), 6075. https://doi.org/10.3390/s22166075 DOI: https://doi.org/10.3390/s22166075
Antonino-Daviu, J. (2020). Electrical monitoring under transient conditions: A new paradigm in electric motors predictive maintenance. Applied Sciences, 10(17), 6137. https://doi.org/10.3390/app10176137 DOI: https://doi.org/10.3390/app10176137
Balakrishnan, G., Yaw, C., Koh, S., Abedin, T., Raj, A., Tiong, S., & Chen, C. (2022). A review of infrared thermography for condition-based monitoring in electrical energy: Applications and recommendations. Energies, 15(16), 6000. https://doi.org/10.3390/en15166000 DOI: https://doi.org/10.3390/en15166000
Bogdanov, D., Ram, M., Aghahosseini, A., Gulagi, A., Oyewo, A., Child, M., Caldera, U., Sadovskaia, K., Farfan, J., De Souza-Noel, L., Fasihi, M., Khalili, S., Traber, T., & Breyer, C. (2021). Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy, 227, 120467. https://doi.org/10.1016/j.energy.2021.120467 DOI: https://doi.org/10.1016/j.energy.2021.120467
Bosu, I., Mahmoud, H., & Hassan, H. (2023). Energy audit and management of an industrial site based on energy efficiency, economic, and environmental analysis. Applied Energy, 333, 120619. https://doi.org/10.1016/j.apenergy.2022.120619 DOI: https://doi.org/10.1016/j.apenergy.2022.120619
Chang, M., Thellufsen, J., Zakeri, B., Pickering, B., Pfenninger, S., Lund, H., & Ostergaard, P. (2021). Trends in tools and approaches for modelling the energy transition. Applied Energy, 290, 116731. https://doi.org/10.1016/j.apenergy.2021.116731 DOI: https://doi.org/10.1016/j.apenergy.2021.116731
Falekas, G., & Karlis, A. (2021). Digital twin in electrical machine control and predictive maintenance: State-of-the-art and future prospects. Energies, 14(18), 5933. https://doi.org/10.3390/en14185933 DOI: https://doi.org/10.3390/en14185933
Firdaus, N., Ab-Samat, H., & Prasetyo, B. T. (2023). Maintenance strategies and energy efficiency: A review. Journal of Quality in Maintenance Engineering, 29(3), 640–665. https://doi.org/10.1108/jqme-06-2021-0046 DOI: https://doi.org/10.1108/JQME-06-2021-0046
Hadziefendic, N., Trifunovic, J., Zarev, I., Kostic, N., & Davidovic, M. (2020). The importance of preventive thermographic inspections within periodic verifications of the quality of low-voltage electrical installations. Machines. Technologies. Materials, 14(2), 78–82. https://stumejournals.com/journals/mtm/2020/2/78
Himeur, Y., Ghanem, K., Alsalemi, A., Bensaali, F., & Amira, A. (2021). Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. Applied Energy, 287, 116601. https://doi.org/10.1016/j.apenergy.2021.116601 DOI: https://doi.org/10.1016/j.apenergy.2021.116601
Hoffmann, M., Wildermuth, S., Gitzel, R., Boyaci, A., Gebhardt, J., Kaul, H., Amihai, I., Forg, B., Suriyah, M., Leibfried, T., Stich, V., Hicking, J., Bremer, M., Kaminski, L., Beverungen, D., Zur-Heiden, P., & Tornede, T. (2020). Integration of novel sensors and machine learning for predictive maintenance in medium voltage switchgear to enable the energy and mobility revolutions. Sensors, 20(7), 2099. https://doi.org/10.3390/s20072099 DOI: https://doi.org/10.3390/s20072099
Laouadi, A., Bartko, M., & Lacasse, M. A. (2020). A new methodology of evaluation of overheating in buildings. Energy and Buildings, 226, 110360. https://doi.org/10.1016/j.enbuild.2020.110360 DOI: https://doi.org/10.1016/j.enbuild.2020.110360
Ortega, M., Ivorra, E., Juan, A., Venegas, P., Martínez, J., & Alcañiz, M. (2021). MANTRA: An effective system based on augmented reality and infrared thermography for industrial maintenance. Applied Sciences, 11(1), 385. https://doi.org/10.3390/app11010385 DOI: https://doi.org/10.3390/app11010385
Piselli, C., Balocco, C., Forastiere, S., Silei, A., Sciurpi, F., & Cotana, F. (2024). Energy efficiency in the commercial sector. Thermodynamics fundamentals for the energy transition. Energy Reports, 11, 4601–4621. https://doi.org/10.1016/j.egyr.2024.04.033 DOI: https://doi.org/10.1016/j.egyr.2024.04.033
Rahman, A., Farrok, O., & Haque, M. (2022). Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and Sustainable Energy Reviews, 161, 112279. https://doi.org/10.1016/j.rser.2022.112279 DOI: https://doi.org/10.1016/j.rser.2022.112279
Scharnhorst, L., Sloot, D., Lehmann, N., Ardone, A., & Fichtner, W. (2024). Barriers to demand response in the commercial and industrial sectors – An empirical investigation. Renewable and Sustainable Energy Reviews, 190, 114067. https://doi.org/10.1016/j.rser.2023.114067 DOI: https://doi.org/10.1016/j.rser.2023.114067
Seabra-Paiva, L., Da Silva-Oliveira, L., Barbosa-De Alencar, D., & Oliveira-Siqueira, P. (2019). Predictive maintenance through thermographic analysis: Case study in a Manaus industrial pole company. International Journal for Innovation Education and Research, 7(11), 898–909. https://doi.org/10.31686/ijier.vol7.iss11.1945 DOI: https://doi.org/10.31686/ijier.vol7.iss11.1945
Valencia-Bacilio, M., Zatizabal-Sánchez, J., Meza-Mina, L., & Chere-Quiñónez, B. (2023). Proposal of a predictive and preventive maintenance plan in electrical substations through the use of thermography. Sapienza: International Journal of Interdisciplinary Studies, 4(2), e23023–e23023. https://doi.org/10.51798/sijis.v4i2.681 DOI: https://doi.org/10.51798/sijis.v4i2.681
Venegas, P., Ivorra, E., Ortega, M., & de Ocáriz, I. (2022). Towards the automation of infrared thermography inspections for industrial maintenance applications. Sensors, 22(2), 613. https://doi.org/10.3390/s22020613 DOI: https://doi.org/10.3390/s22020613
Venegas, P., Ivorra, E., Ortega, M., Márquez, G., Martínez, J., & Sáez-De Ocáriz, I. (2020). Development of thermographic module for predictive maintenance system of industrial equipment. Quantitative InfraRed Thermography Conference, 15, 1–8. https://doi.org/10.21611/qirt.2020.073 DOI: https://doi.org/10.21611/qirt.2020.073
Published
Issue
Section
License
Copyright (c) 2025 Multidisciplinary Journal Epistemology of the Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.