Obtaining synthetic fuels from high-density polyethylene (HDPE) waste Through Simulation in Aspen Plus ®
DOI:
https://doi.org/10.71112/8p1egg26Keywords:
recycling, polyethylene, pyrolysis, synthetic fuels, Aspen Plus®Abstract
The recycling of plastics, especially high-density polyethylene (HDPE), has gained relevance due to its environmental impact. Pyrolysis, a thermal decomposition process, is emerging as a viable solution to convert this waste into synthetic fuels, thereby reducing the accumulation of plastics. The objective of this study is to simulate, using Aspen Plus®, the pyrolysis process of HDPE to obtain synthetic fuels. Aspen Plus® software was used to model and simulate optimal pyrolysis conditions, analyzing parameters such as temperature and residence time. The results show that, under specific conditions, the process can generate products with properties similar to conventional fuels. The conclusions highlight the potential of pyrolysis as an alternative for the recovery of plastic waste and its applicability in the production of renewable fuels, contributing to environmental sustainability.
Downloads
References
Amar Gil, S., Ardila Arias, A. N., & Barrera Zapata, R. (2019). Simulación y obtención de combustibles sintéticos a partir de la pirólisis de residuos plásticos. Ingeniería y Desarrollo, 37(2), 306-326. https://doi.org/10.14482/inde.37.2.1285 DOI: https://doi.org/10.14482/inde.37.2.1285
Anuar, S., Shafferina, D., Abnisa, F., Wan Daud, W. M. A., & Aroua, M. K. (2016). Revisión de la pirólisis de los desechos plásticos. Energía Convers. Manag, 115, 308-326. https://doi.org/10.1016/j.enconman.2016.02.037 DOI: https://doi.org/10.1016/j.enconman.2016.02.037
Arias, F. G. (2019). El proyecto de investigación: Introducción a la metodología científica (6ta ed.). Episteme.
Aspen Technology. (2025, octubre). Knowledge center. Obtenido de Pyrolysis of High-Density Polyethylene: https://knowledgecenter.aspentech.com/item/kb/kA04P0000008NhtSAE?idx=7&AT_EPReference=Aspen%20Plus&AT_EVReference=14
Conesa, J. A., Marcilla, A., Font, R., & Caballero, J. A. (1996). Thermogravimetric studies on the thermal decomposition of polyethylene. J. Anal. Appl. Pyrolysis, 36(1), 1–15. https://doi.org/10.1016/0165-2370(95)00917-5 DOI: https://doi.org/10.1016/0165-2370(95)00917-5
Crespo, J. (2019). Viabilidad de conversión de plásticos en combustible mediante el calor producido en un parque de colectores Fresnel.
Fernández, B., López, V., & Ortega, M. (2017). Simulation and analysis of HDPE pyrolysis using Aspen Plus. Journal of Analytical and Applied Pyrolysis, 126, 205-214.
Gao, F. (2010). Pyrolysis of waste plastics into fuels. (tesis doctoral). University of Canterbury, Nueva Zelanda. Accedido: Sep. 23, 2022. [En línea]. Disponible en: https://sci-hub.ren/http://ir.canterbury.ac.nz/handle/10092/4303
García, P., & Torres, A. (2020). Advances in pyrolysis technology for plastic waste treatment. Renewable and Sustainable Energy Reviews, 115, 109385. DOI: https://doi.org/10.1016/j.rser.2019.109385
Gómez, T., Vázquez, L., & Molina, R. (2016). Pyrolysis as an alternative for plastic waste management: A technical and environmental review. Waste Management, 58, 121-133.
Hernández, P., Morales, F., & Castro, E. (2021). High-efficiency catalytic pyrolysis of HDPE for liquid fuel synthesis. Fuel Science & Technology International, 39(2), 87-102.
Hernández, R., Fernández, C., & Baptista, P. (2014). Metodología de la investigación (6ta ed.). McGraw-Hill.
Jiménez, H., & Vargas, O. (2020). Application of kinetic models in Aspen Plus for HDPE pyrolysis. Journal of Cleaner Production, 252, 119731.
Li, Z., Zhong, Z., Zhang, B., Wang, W., Seufitelli, G. V. S., & Resende, F. L. P. (2020). Catalytic fast co-pyrolysis of waste greenhouse plastic films and rice husk using hierarchical micro-mesoporous composite molecular sieve. Waste Management, 102, 561–568. https://doi.org/10.1016/j.wasman.2019.11.012 DOI: https://doi.org/10.1016/j.wasman.2019.11.012
López, J., Pérez, R., & Castillo, M. (2018). Environmental impact of high-density polyethylene waste and its valorization through pyrolysis. Journal of Sustainable Energy, 25(3), 134-145.
Martínez, L., Gómez, D., & Herrera, J. (2021). High-density polyethylene pyrolysis for liquid fuel production: A review. Fuel Processing Technology, 210, 106567.
Miskolczi, N., Angyal, A., Bartha, L., & Valkai, I. (2009). Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Processing Technology, 90(7–8), 1032–1040. https://doi.org/10.1016/j.fuproc.2009.04.019 DOI: https://doi.org/10.1016/j.fuproc.2009.04.019
Moinuddin, S., Mamunor Mohammad, R., Rashid Mohammed M., & Muhammad S. R. (2012). Proponen una nueva tecnología para reciclar plásticos de desecho en combustible de hidrocarburos en EE. UU. Int. J. Energy Environ., 3, 749-760.
Ordoñez-Agredo, K. A., Coral-Coral, D. F., Rodríguez-Páez, J. E., Diosa, J. E., & Mosquera-Vargas, E. (2023). Pirólisis del tereftalato de polietileno y poliestireno para la síntesis de nanoestructuras de carbono: una revisión bibliométrica. Revista UIS Ingenierías, 22(2), 29-42. https://doi.org/10.18273/revuin.v22n2-2023003 DOI: https://doi.org/10.18273/revuin.v22n2-2023003
Palmay, P., Medina, C., & Vargas, K. (2021). Pirólisis de plásticos de invernadero para recuperar ceras líquidas útiles para refinación. Ciencia Latina Revista Científica Multidisciplinar, 5(3), 2463. https://doi.org/10.37811/cl_rcm.v5i3.464 DOI: https://doi.org/10.37811/cl_rcm.v5i3.464
Pérez, F., Ramírez, J., & Soto, H. (2022). Optimization of pyrolysis parameters for HDPE conversion into fuels. Chemical Engineering Journal, 429, 132378.
Plastics Europe, G. M. R., & Conversio Market & Strategy GmbH. (2019). Plastics - the facts 2019 (p. 14, 35). https://www.plasticseurope.org/en/resources/market-data
Proaño, O., & Crespo, S. (2009). Obtención de combustibles a partir de residuos plásticos, 30, 137-144.
Ramírez, C., & Ortiz, P. (2023). Modelling pyrolysis of plastic waste for sustainable fuel production. Energy & Fuels, 37(4), 2789-2802.
Rejas, L., Carreón, B., Ortiz, M., Llanes, L., & Copa, M. (2015). Generación de combustibles líquidos a partir de residuos plásticos. Revista Ciencia, Tecnología e Innovación, 10(11), 635-642. Recuperado el 7 de febrero de 2025, de http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2225-87872015000100005&lng=es&tlng=es
Rodríguez, C., & Sánchez, E. (2019). Thermochemical conversion of plastic waste: A case study on HDPE. Energy Conversion and Management, 200, 112038.
Rojas, A., & Medina, D. (2018). Environmental assessment of pyrolysis-derived fuels from plastic waste. Renewable Energy, 126, 919-930.
Salazar, D., Pauca, R., & Cochachi, A. (2024). Obtención de combustible líquido a partir de residuos plásticos. Prospectiva Universitaria, 1, 105-110. https://doi.org/10.26490/uncp.prospectivauniversitaria.2022.19.1960 DOI: https://doi.org/10.26490/uncp.prospectivauniversitaria.2022.19.1960
Zhang, B., Zhong, Z., Li, T., Xue, Z., Wang, X., & Ruan, R. (2018). Biofuel production from distillers dried grains with solubles (DDGS) co-fed with waste agricultural plastic mulching films via microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst. Journal of Analytical and Applied Pyrolysis, 130(February), 249–255. https://doi.org/10.1016/j.jaap.2018.02.007 DOI: https://doi.org/10.1016/j.jaap.2018.02.007
Zadgaonkar, A. (2006). Proceso y equipos para la conversación de residuos plástico en combustibles. En J. Scheirs (Ed.), Reciclaje de Feedstock y Pirolisis de los plásticos de residuos (cap. 27). Canadá. https://doi.org/101002/0470021543ch27
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Multidisciplinary Journal Epistemology of the Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.